
 1 

TESTING THE EFFECTIVENESS OF THREE-STEP APPROACHES FOR AUXILIARY 
VARIABLES IN LATENT CLASS AND LATENT PROFILE ANALYSIS 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By 
 

ZACHARY K. COLLIER  
&  

WALTER L. LEITE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

  



 2 

TESTING THE EFFECTIVENESS OF THREE-STEP APPROACHES FOR AUXILIARY 
VARIABLES IN LATENT CLASS AND LATENT PROFILE ANALYSIS 

 

Latent class analysis (LCA) and latent profile analysis (LPA) can be used to find 

unobserved groups, known as classes, that are different based on observed 

characteristics, estimate probabilities of individuals belonging to each class, identify 

characteristics that predict class membership, and estimate differences in distal 

outcomes between classes (Bolck, Croon, and Hagenaars, 2004).  Members of a 

particular class have similar profiles of scores; however, these members have different 

profiles compared to members belonging to other classes.  LCA and LPA can be 

exploratory or confirmatory (Finch & Bronk, 2011). This study focuses on the most 

widely used type, exploratory LCA and LPA.   

LCA and LPA are often used in educational research, sociology, psychology, and 

survey inquiry by researchers such as Keel et al. (2004), Klonsky and Olino (2008), 

Berge et al. (2010), and Sperrin et al. (2014). For example, Denson and Ing’s (2014) 

study used LCA to classify entering college freshmen based on their pluralistic 

orientation at the start of college.  Denson and Ing (2014) examined whether the latent 

classes were related to students’ demographic and background characteristics, and 

provided suggestions on how LCA can aid college administrators in their program 

planning and targeting of interventions. Chung, Flaherty, & Schafer (2006) investigated 

how class membership relates to demographic and lifestyle factors, political beliefs, and 

religiosity over time in regards to marijuana usage.    

While the inclusion of auxiliary variables in LCA models has become more 

common in applied research, there have been few studies comparing methods to 
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include auxiliary variables in LCA.  Furthermore, including auxiliary variables in LPA 

models has not been addressed in previous research. Issues concerning auxiliary 

variables in LCA are dependent upon the type of auxiliary variable associated with the 

model: 

1) Predictor auxiliary variable (latent class regression analysis), the latent 
categorical variable is predicted by the observed variable; 

2) Distal outcome, the observed variable is predicted by the latent categorical 
variable; 

Even though applied researchers have compelling reasons to examine the 

relationships between covariates and latent classes, problems related to including both 

types of auxiliary variables in mixture modeling include unwanted influence in class 

membership, increased computation time, incorrect estimates, and incorrect standard 

errors (Asparouhov & Muthén, 2014).  With this in mind, each issue is attributed to the 

traditional method of including auxiliary variables in LCA models, the “single-step” 

approach.  

Several 3-step approaches were developed in order to autonomously assess the 

association between the latent categorical variable and the distal or predictor auxiliary 

variable (Asparouhov & Muthén, 2013).  One such method is the pseudo class (PC) 

method designed for predictor auxiliary variables and distal outcomes.  This method 

entails estimating the LCA model, then the latent class variable is assigned from the 

posterior distribution obtained from the first step, and the assigned class variables are 

evaluated with the auxiliary variable (Asparouhov & Muthén, 2013).   

The second approach discussed in this study is Vermunt’s method (2010) for 

predictor auxiliary variables and distal outcomes.  Vermunt’s method estimates the LCA 

model and obtains a most likely class variable from the posterior distribution in the 
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estimated LCA.  From the previous step, the most probable class variable indicates the 

latent class variable with uncertainty rates preceded at the probabilities (Asparouhov & 

Muthén, 2013).  Vermunt’s approach was developed based on ideas modeled by Bolck 

et al. (2004). 

The final approach discussed in this study was developed by Lanza et al. (2013) 

solely for distal outcome auxiliary variables.  In this method, the probability distribution 

that gives the likelihood of the latent class variable and the distal variable is regressed 

by the latent class variable as well as conditioned by the distal outcome variable, jointly 

with the distal variable’s marginal dispersal (Asparouhov & Muthén, 2014).   

Little research has determined the best usage of the PC method, Vermunt’s method, 

and Lanza’s method for using auxiliary variables in LCA.  This is an issue because each 

of the methods has their own assumptions and there is little information in the literature 

about required sample sizes for these methods, how they compare with respect to 

power, and whether they provide unbiased estimates across a variety of conditions.  In 

addition, the lack of literature may discourage future studies from including LCA with 

covariates with real data.  The purpose of this study is to compare the PC, Vermunt’s, 

and Lanza’s method in order to define the conditions under which each approach is 

appropriate.   This study will expand the existing simulation studies by manipulating 

sample size, entropy, and the strength of the relationship between the auxiliary variable 

and latent class. 

    

Latent Class and Latent Profile Analyses  

The difference between latent profile analysis (LPA) and latent class analysis 

(LCA) is that outcome variables are continuous in LPA, and are categorical in LCA.   
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The LCA model for two indicators can be expressed as: 

!!"#!"# = !!!"!!!!!!"!!!!!!!! (2-1) 

where !!"#!"# is the likelihood that an item will be located in the i,j,t cell, !!"!!!is the 

conditional likelihood that an indicator in class ! of the latent variable (X) will be located 

at level ! of variable A, !!"!! is the conditional probability of being at level ! of variable B, 

and !!! is the chance of a randomly selected indicator being at level ! of the latent 

variable ! (Henry, 1983).  A LCA with m indicators is: 

!!"…!"!"…!" = !!!"!!!!!!!"!!!!… !!!!"!!!!!!!! (2-2) 

A LPA model for observed variable ! can be expressed as: 

!!! = !! !!" − !! ! + !!!!"!
!

!!!

!

!!!
 

where !!" and !!"!  denote (!) class-specific means and variances for variable 

!, and !! show the proportion of ! participants that belong to class !. 

(2-3) 

Auxiliary Variables  

The latent categorical variable can be further analyzed by investigating the 

association between that variable and other auxiliary indicator variables (Asparouhov & 

Muthén, 2014).  In LCA and LPA, the auxiliary variable can be modeled as a predictor of 

the latent categorical variable, or the latent categorical variable can be used as the 

predictor of the auxiliary variable. In the first case, the variable is a predictor auxiliary 

variable, which in the second case it is a distal outcome.   

In studies where the covariate is categorical, a chi-square test can be used to 

check whether frequencies of the auxiliary variable are the same across each of the 

classes (Dakdjd, 2014). The chi-square test is: 



 6 

!! = !
!! − !!

!

!!

!

!!!
 (2-11) 

where f
j 
represents the frequency of the auxiliary variable in class j (or the total 

observations in class !) for ! = 1, 2, . . ., K (Clark & Muthén, 2009).  As a bi-product of 

the null hypothesis specifying like proportions of the entire sample size for each !, the 

likely frequency for each j equals the full sample size ,!, divided by the number of 

classes, or: 

!! != !/!! for  !! = !1, 2, . . . ,! (2-12) 

LCA modeling with an auxiliary variable, !, where the likelihood that individual !, 

falls in class ! of the latent class variable ! is expressed through multinomial logistic 

regression as 

! !! = ! !! = ! !!!!!!!!!
!!!!!!!!!!!!!

, (2-13) 

where !!! = !0, !!! = !0 so that !! + !!!!!  = 1, which implies that the log odds of 

comparing class ! to the last class ! is 

log ! !!!! !!
! !!!! !!

= !!! + !!!!! !. (2-14) 

Evaluation of Model Fit 

 When evaluating overall fit of a LCA or LPA model, a grouping of relative 

entropy, information criteria, and likelihood ratio tests have been used.  The Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) adjust differently for 

the number of parameters (p) and sample sizes (N) (Lubke & Muthén, 2005; Lubke & 

Neale, 2006.)  Models resulting in lower AIC and BIC indicate better fit.   
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Relative entropy, labeled “Entropy” in Mplus, has a range that starts at zero and 

increases to one.  Entropy can be computed as 

! = 1+ 1
!"#$(!) ( ! ! = ! !! log!(! ! = ! !! ))

!

!!!

!

!!!
 (2-17) 

where ! is the latent variable, ! is the number of classes, ! is the sample size 

and !! is the vector of all latent class indicator variables and the probabilities 

!(!! = !!|!!) are computed from the estimated model (Asparouhov and Muthén, 2014b).  

Unlike AIC and BIC, higher relative entropy indicates better model fit.  

  

Likelihood Ratio Tests  

Although LCA and LPA models with different numbers of classes are nested 

models, the chi-square difference test in the form of the likelihood ratio test (LRT) is not 

appropriate in this kind of analysis (Nylund et al., 2007). When applying this method, the 

p value obtained would not be accurate. Therefore, when figuring the difference in 

likelihoods of a !!− !1 class and a ! class model, the difference is not Chi Square 

distributed and standard difference testing is not appropriate (Nylund et al., 2007).  In 

LCA and LPA, the Lo-Mendell-Rubin likelihood ratio test and Bootstrap likelihood ratio 

test can be performed instead of the traditional likelihood ratio test.  Both of the Vuong-

Lo-Mendell-Rubin and Bootstrap likelihood ratio tests reject or fail to reject the null 

hypothesis (H0), the estimated model.  If either of these likelihood ratio tests results in a 

p value less than .05, the test favors the estimated model over the model with one fewer 

class (H1).   
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Conducting Analysis with Auxiliary Variables 

According to Asparouhov and Muthén (2014), the standard method of dealing 

with auxiliary variables in LCA is by combing the LCA model and the auxiliary model 

(distal or predictor auxiliary variable) into a joint model.  As a result, this method can be 

predictable with the maximum likelihood estimator and is called the “one-step” and/or 

“single-step” approach.  Using the one-step approach in LCA is faulty, because the 

subordinate model affects the latent class construction. Furthermore, the latent 

categorical variable may lose its meaning as the latent variable measured by the 

indicator variables (Asparouhov and Muthén, 2014).   

Since the discovery of these flaws within the one-step method, several methods 

have been established in order to autonomously assess the relationship between the 

latent class variable and the predictor or distal auxiliary variables (Asparouhov and 

Muthén, 2014).  The methods that we will discuss are the pseudo class (PC) method 

(1987), Vermunt’s method (2010), and the Lanza (2013) et al. method.   

The Pseudo Class Method 

The PC method makes draws by taking random samples for the multinomial 

distribution, which allows individuals opportunity to join different classes.  Draws from 

the PC method allow class specific means, variances, mean equality tests and 

regression to be determined (Clark and Muthén, 2009).  

  Asparouhov and Muthén (2014) describe the steps to the PC method as follows: 

1. Estimate the LCA 

2. Multiply impute the latent class variable from the posterior distribution obtained 
from the LCA model estimation 

3. Use the multiple imputation technique developed in Rubin (1987) to analyze the 
imputed class variable with the covariate 
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For more detailed information on the third step and development of the PC method, 

review Scafer (1999).  According to Clark and Muthén (2009), the PC method 

underestimates the regression effects of the classes on covariates; however, the 

method performed well when entropy was above .80.   

Vermunt’s Method 

In 2010, Vermunt modified what he refers to as the “BCH” method created by Bolck, 

Croon, and Hagenaars (2004).  The BCH method is flawed, because it requires the 

covariate to be categorical, matrix multiplications are required in the arrangement of 

data stage and must be repeated after the addition of new covariates, and analyzing the 

reweighted data using a standard logistic routine yields severely downward biased 

standard errors; thus, too liberal a significance test for the logistic regression 

coefficients (Vermunt, 2010).    

Vermunt’s proposed steps are as follows: 

1. Estimate the latent class model using only indicator variables 

2. Create the maximum probable class variable using the latent class 
posterior distribution attained in step one 

3.  Regress the most likely class on predictor variables taking into 
account the misclassification of the subsequent step 

Standard errors may be slightly underestimated because the classification error 

probabilities !(!! = !!|!! = !!) are treated as known; although they are determined with 

the estimated parameters of the LCA model without auxiliary variables (Vermont, 2010). 

Lanza’s Method 

The Lanza et al. (2013), method has the following steps: 

1) Estimate the LCA model. 
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2) Estimate a model with auxiliary variables where the distal outcome is used as a 
latent class predictor inside a multinomial logistic regression in addition to the 
latent class model 

3) To determine the conditional and marginal distributions use the auxiliary model 

We will present the third step in more detail.  Applying the Baye’s theorem below 

can derive the desired conditional distribution:  

! ! ! = !! ! !(!|!)
!(!)  (2-29) 

Lanza’s method can only be used for distal outcomes.  Additionally, Lanza’s method 

cannot have a LCA model that has latent class predictors (Asparouhov and Muthén, 

2014). 

The only difference between LCA and LPA is the classification of indicators of the 

latent variable as categorical or continuous.  Auxiliary variables can be either 

categorical or continuous and each 3-step approach handles both types of distal 

outcome variables.  Additionally, each method is initiated in the final step of the analysis 

and does not assume that indicators are either categorical or continuous.  Therefore, 

even though research on 3-step approaches has been focused on LCA, they can also 

be used for LPA models.   

Research Questions 

In this study, the PC method and Vermunt’s method, and Lanza’s method are 

compared after manipulation of sample size, the strength of the association between 

auxiliary variable and latent class, entropy, and type of auxiliary variable.  Additionally, 

we provide a step-by-step guide for running a LPA with estimation of a distal outcome 

using each of the three-step methods.  The research questions addressed by this study 

are: 
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• RQ1: How do the PC and Vermunt’s three-step methods perform with respect to 
estimating the coefficient of a predictor of class membership and its standard 
error with varying levels of sample size, class separation, and strength of 
predictive relationship?  

• RQ2: Do the PC, Vermunt, and Lanza three-step methods differ with respect to 
power and type I error to test the estimated relationship between the auxiliary 
variable and the latent class variable? 

• RQ3:  What are the differences in implementation and results between the PC, 
Vermunt, and Lanza three-step methods when applied to a dataset with a distal 
outcome?  
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Table 2-1:  Two- Class LCA Example    
 X = 1 (Tolerant) X = 2 (Intolerant) 
P(X = x) .62 .38 
P(Y1 = 1|X = x) .96 .23 
P(Y2 = 1|X = x) .74 .04 
P(Y3 = 1|X = x) .92 .24 
 

 

Table 2-2:  Auxiliary Variable Table Example          
Y1 Y2 Y3 Y4 
1 1 1 14 
1 1 2 23 
1 2 1 55 
1 2 2 70 
2 1 1 17 
2 1 2 29 
2 2 1 37 
2 2 2 46 
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METHOD 

Population Model for Simulation 

Data for two-class models with five binary observed variables were generated 

using R for this Monte Carlo simulation study.  A simulation was used because 

analytical comparisons between methods are not available.  In this study, the described 

model was chosen, because similar two-class models have frequently been used in 

applied research with LCA such as Pickels et al (1995), Klonsky and Olino (2008), and 

Ubersax and Grove (1990).  Furthermore, previous methodological studies have been 

limited in quantity and also in the manipulations of conditions of two-class LCA models.   

As in Asparouhov and Muthén’s (2014) study, each binary observed variable !’s 

distribution was determined by the logit relationship 

! ! = 1 ! = !1/(1+ !"#(!!)) (3-1) 

where ! is the latent class variable which takes values 1 or 2 and the threshold value !! 

is the same for all 5 binary indicators. In addition, we set K2 = −K1 for all five indicators.    

Next, an auxiliary variable was generated as a predictor of the latent class 

variable by using a logistic regression model 

! ! = ! ! = 1/(1+ !"# ! + !!" ) (3-2) 

where the population value of α is held constant at 0.3.  Also, β denotes the effect for 

the relationship between the class membership and the auxiliary variable X.  The 

auxiliary variable was normally distributed, had a mean of zero, and a standard 

deviation of one.   
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Manipulated Conditions 

Manipulating the threshold value directly alters the overall separation of the 

classes, measured by entropy, by changing the probabilities describing the probable 

outcomes of a single trial, as a function of the predictor variables.  This logistic 

relationship manipulates ! ! = !! !! !within the entropy equation, Equation 2-14, 

previously discussed.  Thus, a larger specified !! value will result in a larger separation 

of classes.  The opposite is true when the !! value is smaller.  Using the value of !!= 

1.50, we obtained an entropy of 0.8 and with value !! = 0.75, we obtained an entropy of 

0.5.  Simulations of population, !, with 50,000, 100,000, and 150,000 cases were 

conducted in order to determine the values of entropy. These two values of entropy 

were chosen, because previous research has shown that when separation increases to 

.8, logistic regression has the lower values of mean squared error (MSE) (Clark & 

Muthén, 2009). This study followed the suggestions of that study by making two distinct 

levels of separation of classes, medium and high.    

Next, an auxiliary variable was generated as a predictor of the latent class 

variable by using a logistic regression model, Equation 3-2, where the population value 

of α was held constant at 0.3.  Unlike Asparouhov and Muthén (2014), this study 

simulated relationship between the class membership and the auxiliary variable with 

population values of β equal to 0 for no effect, .3 for medium effect, and .5 for a large 

effect.  The justification for generating conditions with zero effect was to allow for the 

evaluation of Type I error rates. The justification for generating conditions with effect of 

0.3 and 0.5 was to evaluate change of power as the effect becomes larger.  To analyze 

the data, the PC method and Vermunt’s method were used in this simulation study.   
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 A normally distributed distal outcome variable was generated with a regression to 

establish a class that had a mean of zero and the other class to have a mean equal to 

β.  The population effect size of class membership on the distal outcome variable, β, 

was set to zero, 0.5 and 0.8.  Since the difference between the two types of auxiliary 

variables is the direction of the covariate in the LCA model, the same justification of 

variation in effect sizes of the association between the class membership and the distal 

outcome variable apply.  

We defined the sample sizes of the simulated datasets as 100, 500, and 5,000 

observations, because Asparouhov and Muthén (2014) suggested that future 

researchers test datasets of these magnitudes since no other studies have done this 

before.  Furthermore, many applied studies, such as Deerwester et al. (1990), Barns et 

al. (2013),  and Collins and Lanza (2010), using LCA models have similar sample sizes.  

Manipulating these sample sizes may help applied researchers with similar data. 

Predicted changes across sample sizes are due to its effects on the correctness of 

estimations of the effect of latent class membership and the latent class model on the 

distal outcome (Tan et al., 2015). 

The factors manipulated in this simulation were a) type of auxiliary variable with 

two levels, b) sample size with three levels, c) entropy with two levels, and d) 

relationship between auxiliary variable and class membership with three levels.  

Therefore, the study is a 2!!!2!!!3!!!3 design, resulting in 36 conditions.  For each 

condition manipulated, 1000 datasets were simulated.  Of the 36,000 datasets 

generated with an auxiliary variable that is a predictor of class membership, the 

researcher analyzed with the PC method and Vermunt method.  For the datasets 
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generated with an auxiliary variable that is a distal outcome, the researcher analyzed 

with the PC method, the Vermunt method, and the Lanza method. 

Analysis 

LCA models were fit with 7.31 version of MPLUS.   Each method was compared 

based on relative bias of coefficient approximations, relative bias of standard errors 

estimate, Type I error rates, coverage, and power.  

Relative bias of coefficient estimates was used as an outcome in this study, 

because it is more easily interpretable than bias given that it takes the form of a 

proportion.  .  Relative bias (Bandalos, & Leite, 2013),  

!"#$% !! = ! !!" − !!
!!

/!!
!!

!!!
 (3-3) 

which denotes !! as the population parameter, !!" as the !"ℎ sample estimate of the !"ℎ 

true parameter value, and !!, is the number of replications within the cell.  This studies’ 

criteria for acceptable levels of relative bias of coefficient estimate is an absolute value 

less than or equal to .05, as proposed by Hoogland and Boomsma (1998).  

The relative bias of standard errors estimates were calculated as(Bandalos & 

Leite, 2013): 

!"#$% !" !! = !
!"!! − !!"!!

!"!!
 (3-4) 

where !"!! is an estimate of the population value of the standard error of !! and !"!!  is 

the mean of the estimated standard errors of !! across NR replications.  . The empirical 

standard error !"!! is determined by taking the standard deviation of parameter 

estimates across the iterations.  This study‘s criterion for acceptable levels of bias is 
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absolute relative bias less than or equal to .1, which is proposed by Hoogland and 

Boomsma (1998).  

Similarly to Asparouhov and Muthén (2014), we used coverage, the percentage 

of iterations where the population value is contained within the confidence interval of the 

parameter estimated, to evaluate the adequacy of confidence intervals. Coverage is 

affected by both parameter estimates and standard errors.  Collins, Schafer, and Kam 

(2001) argued that coverage below 90% is problematic.  

For conditions with zero effect, we evaluated whether Type I error rate is close to the 

.05 alpha level, and whether any method inflates type I error rates.  

For conditions with non-zero effect, we calculated the power of each 3-step 

method to detect the effect of the predictor of class membership or the effect of class 

membership on the distal outcome.  

Due to the extent of this simulation design, visual examination of effects of 

manipulated conditions is difficult.  Therefore, we used a mixed-design analysis of 

variance (ANOVA) and generalized eta squared (G η2) (Olejnik & Algina, 2003) 

measure of effect size to sort manipulated conditions with respect to the magnitude of 

their effect on relative bias of coefficient estimates, relative standard error bias, 

coverage, type I error, and power.  In these mixed-design ANOVAs, the between-

dataset factors were entropy, effect, and sample size. The within-dataset factor was 

type of method, with three levels: the PC method, Vermunt’s method, and Lanza’s 

method.  The dependent variables were !!"!!!
!!

 , the relative deviation of the coefficient 

estimate from the population parameter, and 
!"!!!!!"!!

!"!!
.  , the relative deviation of the 
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estimated standard error from the empirical standard error, coverage, Type I error and 

power. Additionally, the mixed-design ANOVA models included all interactions between 

the manipulated factors.  Substantial effects were determined when G η2 was above 

0.001. 
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RESULTS 

Latent Class Predictor as an Auxiliary Variable 

.  Tables 3-1 through 3-5 show the effects of the manipulated conditions on each 

parameter estimate.  Tables 3-6 and 3-7 contain the results of the simulation study with 

an auxiliary variable using Vermunt’s 3-step method and the PC method. of provided 

parameter estimates refers to absolute values. 

Relative bias of coefficient estimates.  There was a significant main effect of 

method G η2 = .148 on the relative bias of coefficient estimates.  This tells us that if we 

ignore the entropy, sample size, and effect, the PC method and Vermunt’s method were 

still different than each other.  Both entropy and effect, relationship between the 

predictor auxiliary variable and class membership, had an effect on relative bias of 

coefficients estimates as well G η2 = .072 and G η2 = .005.  Additionally, sample size 

had an effect of G η2 = .003. The fact that entropy interacted significantly with the type 

of method implemented tells us that the methods respond differently to the adverts of 

entropy at .5 and .8.  Additionally, there was an effect of the interaction between sample 

size and effect.  Relative bias of coefficient estimates for the PC method ranged from 

.03 to .578 and had a stronger level of bias compared to Vermunt’s method.  Bias for 

Vermunt’s method ranged from .001 to .064.Conditions with an entropy value of .8 had 

more acceptable levels of relative bias of coefficient estimates than the entropy value of 

.5 for both methods.  As effect increased from .3 to .5, bias increased in all conditions 

for the PC method and most conditions for Vermunt’s method.  Relative bias of 

coefficient estimates increased with sample size for the PC method except when 

entropy was .8, sample size was 5000, and effect was .5.   
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Relative bias of standard error estimates.  There was a large main effect of 

effect, methods, entropy, and sample size on relative bias of standard errors G η2 = 

.646, .578, .379, and .005.  Additionally, there was an effect of the interaction between 

entropy and method G η2 = .531, effect and method G η2 = .053, sample size and 

method G η2 = .015, entropy and effect G η2 = .007, entropy and sample size G η2 = 

.004, and effect and sample size G η2 = .003.  The interaction between entropy, effect, 

and method had an effect on relative bias of standard error estimates.  Furthermore, the 

interaction between entropy, sample size, and methods had an equal effect.  Relative 

bias of standard error estimates increased with effect for the PC method, except when 

effect was .5, sample size was 500 and 5000.  Relative bias of standard error estimates 

for the PC method ranged from .162 to 2.03.  Bias for Vermunt’s method ranged 

between .009 and .71.  The PC method showed decrease in relative bias of standard 

error estimates when entropy was increased from .5 to .8.  Bias decreased in most 

cases when entropy was increased for Vermunt’s method.  The interaction between 

entropy and method shows that Vermunt’s method had weaker levels of relative bias of 

standard error estimates between both levels of entropy in comparison to the PC 

method.  Additional interactions show that the PC method had stronger levels of bias 

between the three levels of effect sizes compared to Vermunt’s method, increases in 

entropy and effect decrease bias, increases in studied samples sizes and effect 

averaged decreases in bias, increased sample size and effect decreased bias as well.   

Coverage.  There was a main effect of the relationship between the predictor 

auxiliary variable and class membership on coverage G η2 = .103.  Coverage was 

unacceptable for both methods when effect was zero.  However, coverage was 
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acceptable at .95 and above when effect was .3 and .5.  For all cases where coverage 

was below 1 at an effect of .3, coverage increased when effect increased to .5.  The PC 

method had coverage that ranged from .778 to .782 and Vermunt’s method ranged .76 

to .793.       

Type I Error.  There was a small main effect of methods (G η2 = .011 ) 

implemented and entropy (G η2 = .002) on type I error rates.  The PC method had type I 

error rates that ranged from 0 to .034 and Vermunt’s method ranged .031 to .055.  The 

type I error increased when entropy was increased from .5 to .8 for all cases except 

when Vermunt’s method had an entropy of .8 and sample sizes of 500 and 5000.   

Power.  Sample size (G η2 = .389 ) and entropy (G η2 = .117) had the largest 

effects on power.  Effect (G η2 = .042 ) and methods (G η2 = .020) had smaller effects 

on power.  Interactions with the largest effects were entropy and sample size (G η2 = 

.058) and effect and sample size (G η2 = .020).  Interactions between sample size and 

method, entropy and method, and entropy, sample size, and method had the smallest 

effect on power.  Increasing sample sizes between 100 and 5000 increased power.  

However, power was lower than 0.8 for the PC or Vermunt’s method when sample size 

was 100 and 500, except when sample size was 500, effect was .5, and entropy was .8.  

Power was equal to or above 0.8 when sample size was 5000 for both methods.  

Continuous Distal Outcome Auxiliary Variable   

Tables 3-8 through 3-12 show the effects of the manipulated conditions on each 

parameter estimate.  Tables 3-13 through 3-16 contain the results of the simulation 

study with a distal outcome auxiliary variable using the PC method, Vermunt’s 3-step 

method, and Lanza’s method. In this simulation study, the three methods were 

compared based on the same terms as the previous model.   
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Relative bias of coefficient estimates.  The type of method (G η2 = .279) 

effected the relative bias of coefficient estimates the most.  The interactions between 

sample size and methods (G η2 = .004) and entropy and method (G η2 = .002) had the 

least effect on the parameter estimate.  In Tables 3-13 through 3-16, these values 

needed to be below .05 in order to meet the standards of bias by Hoogland and 

Boomsma (1998).  The relative bias of coefficient estimates ranged from .001 to .09 for 

Lanza’s method, .705 to .918 for the PC method, and 0 to .239 for Vermunt’s method.  

The PC method had no acceptable levels of relative bias of coefficient estimates, 

whereas Lanza’s method had 8 cases of acceptable bias and Vermunt’s method had 7.  

When sample size increased, relative bias of coefficient estimates decreased for 

Lanza’s and Vermunt’s methods and increased when estimated by the PC method.  

Bias decreased when entropy was increased for Vermunt’s and Lanza’s methods, 

except when sample size was 500 and effect was .5 and when sample size was 5000 

and effect was .3.  Relative bias of coefficient estimates decreased when entropy was 

increased from .5 to .8 for the PC method, except when sample size is 5000.        

Relative bias of standard errors estimates.  There was main effects of effect, 

entropy, method, and sample size on relative bias of standard errors G η2 = .6, .149, 

.145, and .101.  Additionally, the interactions between effect and method (G η2 = .754), 

entropy and method (G η2 = .605.), sample size and method (G η2 = .308), and effect, 

sample size, and method (G η2 = .178) had large effects.  The interactions between 

effect and sample size (G η2 = .094), entropy, sample size, and method (G η2 = .035), 

entropy, effect, sample size, and method (G η2 = .024), and entropy, effect, and method 

(G η2 = .018) had smaller effect sizes.  The smallest effect sizes on relative bias of 
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standard errors were the interactions between entropy and effect, and entropy, effect, 

and sample size.  In Tables 3-13 through 3-16, these values need to be below .01 in 

order to meet the standards of bias by Hoogland and Boomsma (1998).  Relative biases 

of standard errors estimates were not acceptable for each all conditions studied.  

However, there was a lower relative bias of standard errors estimates for entropy valued 

at .8 compared to .5.  Relative bias of standard errors estimates ranged from .028 to 

.522 for Lanza’s method, .068 to .93 for the PC method, and .015 to .313 for Vermunt’s 

method.  Bias increased with increases in sample size.  Relative bias of standard errors 

decreased with increased effect for Lanza’s method, except when entropy was .8, effect 

was .5, and sample sizes were 100 and 500.  Bias increased when effect was increased 

for the PC method except when entropy was .5, effect was .3, and sample size was 

100.  Bias fluctuated between increasing and decreasing when effect increased for 

Vermunt’s method.   Vermunt’s and Lanza’s method decreased levels of bias with 

increases in sample size, except when entropy was .5, effect was 0, and sample size 

was 5000 and when entropy was .8, effect was .3, and sample size was 5000.  When 

the PC method, increases in sample size resulted in increased relative bias of standard 

errors estimates for all conditions, excluding entropy at .5, effect of 0, and sample size 

of 5000.  When effect was 0 and sample size was 100, the PC method had the lowest 

average relative bias of standard errors estimates.  Whereas, Vermunt’s method had 

the lowest average bias when effect was 0 and sample sizes were 500 and 5000.  

Vermunt’s method was also the lowest when effects were .3 and .5 and sample sizes 

were 100, 500, and 5000.  As effect and sample size increases, bias decreases for 

Lanza’s and Vermunt’s methods and increases for the PC method.         
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Coverage.  Sample size (G η2 = .027) and effect (G η2 = .009) had the largest 

main effects on coverage.  The interactions with the largest effects were between effect, 

sample size, and method (G η2 = .027), effect and method (G η2 = .017), effect and 

sample size (G η2 = .011).  Interactions with the smallest effects were between entropy, 

sample size, and method, entropy and method, sample size and method, entropy, 

effect, sample size, and method, and entropy, effect, and method. There were mean 

increases in coverage with increases in sample size and increases in effect.  The 

interaction between effect, sample size, and method show decreases in coverage for 

Lanza’s and Vermunt’s methods.  Additionally, the interaction is the same for the PC 

method, excluding conditions where coverage was equal to 1 prior to increases.  The 

PC method had the most acceptable levels of coverage in comparison to the other 

methods.  Additionally, when examining the interaction between effect and method the 

PC method had an average coverage of 1 for each effect, except when effect was 0.  

Lanza’s method decreased in levels of coverage with increases in sample size and 

effect.  Vermunt’s method and the PC method increased coverage with increases in 

sample size and effect.             

Type I Error.  The largest main effects on type I error rates were methods (G η2 

= .054) and entropy (G η2 = .007).  The interaction between entropy and method also 

had an effect (G η2 = .022).  Levels of type I error rates ranged from .072 to .299 for 

Lanza’s method, 0 to .028 for the PC method, and .038 to .065 for Vermunt’s method.  

The PC method had the most acceptable levels of type I error rates between methods.  

Type I error rates were lower when entropy was valued at .8 compared to .5.  

Additionally, the interaction between entropy and method show that when entropy is 
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increased Lanza’s and Vermunt’s methods do not have consistently have more 

acceptable type I error rates compared to the PC method at lower valued entropy.         

Power.  The main effects of sample size, method, effect, and entropy had the 

largest effect on power G η2 = .286, .063, .047, and .043.  The interactions between 

sample size and method, entropy and method, effect and sample size, entropy and 

sample size, and entropy, sample size, and method have smaller effects on power.  

Power averaged increases with higher sample size across methods.  Power for Lanza’s 

method ranged from .297 to 1, .028 to 1 for the PC method, and .128 to 1 for Vermunt’s 

method.  Power was most acceptable for Lanza’s method compared to Vermunt’s 

method and the PC method.  Power increased with increases in effect.  Power 

increased with increased values of entropy for all methods, except Lanza’s method 

when entropy was .8, effect was .3, and sample size was 100.    
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DISCUSSION 

The contribution of this research study is to provide a detailed comparison of the 

few methods of working with auxiliary variables in LCA and LPA, and a step-by-step of 

estimating the effects of class membership on distal outcomes with LPA and 3-step 

methods.   

The Performance of 3-Step Methods with Auxiliary Predictor Variables 

Since Asparouhov and Muthén’s (2014) study is the only study that compares the 

three 3-step methods, it is useful to compare their results with the current study.  Both 

studies agree that Vermunt’s method has shown to be a better method in comparison to 

the PC method when the auxiliary variable is a latent class predictor.  The power levels 

with Vermunt’s method was higher than the power with the PC method.  However, the 

current study indicates that the PC method has lower type 1-error rates under all 

studied conditions.   

The current study expanded Asparouhov and Muthén‘s (2014) study by using 

different sample sizes, predictor variable and class relationships, and levels of entropy.  

Our results align with Clark and Muthén’s (2009) study which showed that the PC 

method worked well only when entropy was greater than .8.  .  However, in this study, 

the PC method did not result in any acceptable levels of relative bias of coefficient 

estimates or standard error estimates under any manipulated conditions.  Coverage 

was acceptable when effects were above zero, and type I error rates were acceptable at 

all levels of conditions. 

Vermunt’s method had satisfactory levels of relative bias of coefficient estimates 

for all conditions when sample size was above 100 except when effect and entropy 

were .5. Type I error rates were acceptable at all manipulations of conditions.  
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Vermunt’s method provided acceptable results when entropy was .8, sample sizes were 

500 and 5000, and effect was .3 and .5.  

The Performance of 3-Step Methods with Distal Outcomes 

Although the effects of sample size, ! higher than zero, and entropy are not 

similar between the PC method and Vermunt’s method when the auxiliary variable is a 

predictor of latent class, effects were not as definite in the distal outcome simulations.  

Asparouhov and Muthén’s (2014) study reported that the PC method was outperformed 

by Vermunt’s method, and thatLanza method is more accurate than Vermunt’s method.  

This accuracy was due to Lanza’s method not allowing for the distal outcome to 

significantly change the class membership for individual observations.   

We found that the PC method outperforms both Lanza’s and Vermunt’s methods 

in terms of type I error when entropy is low.  However, Vermunt’s method had the best 

coverage under studied conditions.  Lanza’s method had lower relative bias of 

coefficient estimates, but Vermunt’s and the PC method had lower relative bias of 

standard error estimates.  Generally, our results match results of previous research and 

we agree that Lanza’s method and Vermunt’s method are better than the PC method.  

Since we included more sample sizes in this study than previous studies, we can 

conclude that when there is relationship between the auxiliary variable and the latent 

categorical variable, Lanza’s method produces higher levels of power than Vermunt’s 

method. However, Vermunt’s method  produced lower relative bias of standard error 

estimates. 

Lanza’s method had acceptable levels of relative bias of coefficient estimates at 

all manipulated conditions except when sample size was 100, effect was .3, and entropy 

was .5.  Relative biases of standard error estimates were acceptable when entropy was 
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.8.  Coverage was acceptable for all conditions except when entropy was .8 and sample 

size was 5000.  Type I error rates were not acceptable under any manipulated 

conditions.  Power was above 0.8 when sample size was above 500 and effect was .3.  

Also, power was above 0.8 when sample size was above 100 and effect was .5.   

The PC method had no acceptable values of relative bias of coefficient estimates 

and standard error estimates.  Additionally, relative biases of standard error estimates 

were acceptable when entropy was .8 and effect was zero.  The estimate was also 

below .1 when entropy was .5, effect was .3, and sample size was 100.  Coverage was 

acceptable for all conditions except when sample size was 5000 and effect was zero.  

Type I error rates were acceptable at all levels of manipulated conditions.  Power was 

only consistently acceptable when sample sizes above 500.  

Vermunt’s method had acceptable values of relative bias of coefficient estimates 

across conditions, except when entropy was .5 and sample size was 100.  Relative 

biases of standard error coefficients were only acceptable when entropy was .8.  

Coverage was above .95 across all conditions, except when sample size was 5000 and 

entropy was .8.  Consistent acceptable values of type I error rates were at sample size 

of 500, and power was above 0.8 for only samples above 500.      

Researchers using Lanza’s method should expect entropy and sample size to 

decrease relative bias of coefficient estimates.  Increases in entropy will decrease 

relative bias of standard error estimates.  Coverage will increase with increases of 

entropy between .5 and .8.  Additionally, sample size decreases type I error rates and 

increases power.  For researchers using the PC method, expect relative bias of 

coefficient estimates and relative standard error bias to increase with sample sizes 
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between 100 and 5000.  Also, increases in effect size will increase coverage.  Type I 

errors will decrease with increases of sample size, and higher entropy values will also 

increase type I error rates.  For researchers using Vermunt’s method, expect relative 

bias of coefficient estimates to decrease with sample size and entropy.  Also, relative 

bias of standard error estimates decrease with entropy.  Coverage will decrease with 

sample size, and power will increase with increases of sample size and values of 

entropy.  
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EXAMPLE APPLICATION OF LATENT PROFILE ANALYSIS 

This example analysis demonstrates the use of the 3-step methods in latent 

profile analysis. The objective of the example analysis is to determine whether usage 

indicators for the Algebra Nation system can be to separate schools into classes, and 

whether these classes differ with respect to the passing rates in Florida’s Algebra I End-

of-Course assessment. Algebra Nation is an online learning environment to facilitate 

algebra learning. Participants were 1,185 middle and high schools in Florida during the 

2014-2015 academic school year.  All middle and high schools in the state were 

integrated with online access to Algebra Nation program and free workbooks.  Schools 

had the option to use the program as little or as much as administrators, teachers, and 

students saw fit.    

 

Method 

       Data was collected by the Algebra Nation system on number of workbooks ordered, 

teacher and student logins and videos, and test prep based on the Next Generation 

State Standards and Common Core Standards.  Descriptive statistics show that 

Florida's schools offering Algebra I had a sum of 244,441 workbooks ordered, 

1,726,348 logins, 1,801,521 video views, and 528,140 total test yourself prep. 

Six Algebra Nation usage variables were used as indicators of the latent 

categorical variable, 1) average number of student logins, 2) average number of student 

videos viewed, 3) average number of teacher logins, 4) average number of teacher 

videos viewed, 5) average number of videos viewed by teachers and students, 6) 

average number of teacher and student logins.    
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The first step of the analysis was to identify the number of classes. We fit latent 

profile models with 2, 3 and 4 classes.  These models were compared based on a set of 

fit indices:  1) AIC, 2) BIC, 3) the Vuong-Lo-Mendell Rubin adjusted likelihood ratio test, 

and 4) entropy.  

The distal outcome for this analysis is the school-level Algebra I passing rate, 

which ranged in this sample from 3% to 99%.  Estimation of the effect of latent classes 

on the distal outcome was conducted using the following approaches: PC, Vermunt's, 

and Lanza's methods. We used the 7.31 version of MPLUS to conduct each step of the 

analysis. 

Results 

Step 1:  Determining classification accuracy of the models using model fit indices 

 The 2-class latent profile model was compared to the 3 and 4-class models.  

Model fit indices can be found in Table 3-16.  The log-likelihood was replicated for each 

of the three models tested, which indicated that researchers had no evidence of 

reaching of local maxima (Blevins, Weathers, & Witte, 2014).  As the number of classes 

extracted increased from 2 to 3 and 4, both AIC and BIC decreased as the number of 

tested classes increased.  The 4-class model had the lowest AIC and BIC at 52953 and 

53151.  Entropy of models yielded values of .965 for the 2-class, .963 for the 3-class, 

and .971 for the 4-class.  When comparing the 2-class model to a model with only one 

class and comparison of the 3-class model with the 2-class model, the LMR was below 

.05.  However the LMR was .117 in favor of the 3-class model over the 4-class.  

 The 3-class model was chosen as the best fitting model on the basis that the 

LMR rejected the 4-class model and there was little differences between the fit indices 
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of all three models.  Researchers in applied fields should factor interpretable means and 

variances and number of classes along with fit indices when deciding a most 

appropriate model.  For this study, we will only interpret the 3-class model.   

Step 2:  Identifying the classification solutions for 3- class model 

 Table 3-17 shows approximately, 46% of the schools belonged to the first class, 

45% in the second class, and 9% in the third class.  From Table 3-18, schools in the 

first class had a mean of 3.655 student logins, 3.184 student video views, 9.172 teacher 

logins, 7.754 teacher video views, 0.560 videos viewed by number of ordered 

workbooks, and 0.731 logins by number of ordered workbooks.  While schools in the 

second class had a mean of 10.492 student logins, 13.043 student video views, 41.993 

teacher logins, 73.415 teacher video views, 9.381 videos viewed by number of ordered 

workbooks, and 7.911 logins by number of ordered workbooks.  Schools in the third and 

smallest class had a mean of 24.656 student logins, 38.673 student video views, 63.672 

teacher logins, 215.482 teacher video views, 47.808 videos viewed by number of 

ordered workbooks, and 31.594 logins by number of ordered workbooks. 

Step 3:  Examining the probability of an outcome given latent profile membership 

 In this step we are interested in how school passing rates varied across classess 

of Algebra Nation usage.  The PC, Vermunt’s, and Lanza’s methods were used to 

estimate mean differences across classes.  The means for the PC method and Lanza’s 

method were most similar,  while Vermunt’s method yielded higher mean passing rates 

for each class.  Located in Table 3-19, the average passing rate using Lanza’s method 

was 63.251 for the first class, 69.356 for the second class, and 80.992 for the third 

class; the PC method was slightly higher.  Vermunt’s method yielded class means of 
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63.374, 68.927, and 83.322 for passing rates.  Additionally, a chi-square !! test of 

independence was conducted to determine if each class was significantly different from 

each other.  The mean differences between classes were all statisticaly significant at α 

= .05 with all 3-step methods. Because classes one, two and three had increasing levels 

of usage of Algebra Nation, it can be concluded that higher levels of Algebra Nation 

usage corresponds to higher passing rates in the Algebra I End-of-Course exam..  
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CONCLUSION 

This study made a comparison of three proposed methods for estimation of latent 

class analysis models with covariates.  This early work sets the stage for the 

optimization and enhancement of these methods, and determination of when methods 

will yield optimal results.   

Vermunt’s method has shown to be the best available method for analyzing LCA 

models with covariates as the latent class predictor under a variety of conditions. 

Although this study was the second to make this conclusion, future studies should focus 

on the improvement of Vermunt’s method to become more robust with conditions having 

little to no effect sizes. 

Lanza’s and Vermunt’s methods have shown to be the best available approaches 

for estimating the effect of latent class membership on a distal outcome.  In Asparouhov 

& Muthén (2014) and Lanza et al. (2013), Lanza’s method was determined the best 

method based on coverage, bias, and mean squared error.  Between the Vermunt’s and 

Lanza’s methods, the preferred method which yielded the most acceptable parameters 

estimates in the conditions evaluated in this study was Vermunt’s method.  As 

suggested in Lanza et al. (2013) our study has contributed by varying the effects of the 

class on the distal outcome.  Future research should contribute by improving these 

methods’ parameter estimates when effect and sample size is small, testing these 

approaches in latent profile analysis, growth mixture modeling, factor mixture modeling, 

and mixture regression modeling (Lanza et al., 2013). 

Although there are individual cases where the PC method resulted in acceptable 

levels for each parameter estimate, no tested set of manipulated conditions produced all 

acceptable estimates.  At this point in the research of this method, there is not a proven 
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set of conditions where the PC method will work with predictor auxiliary variables in 

LCA.  However, the PC method does yield acceptable results across all studied 

parameters when there is no effect and entropy is .8 for distal outcomes.  Unfortunately, 

in most applied studies the researchers will be testing for effect; in such cases, the PC 

method would still not be useful.  

 Vermunt’s method showed to be a reliable method; however, the approach came 

with drawbacks.  The method yields acceptable parameter estimates when there is an 

effect of predictor auxiliary variables.  Alternatively, researchers using this method will 

lose coverage and increase relative bias of standard error estimates in cases where 

there is no effect.  In terms of the distal outcome, Vermunt’s method yields acceptable 

results when entropy is .8.  Researchers using this method should note that when 

sample size is 5000, coverage would lessen slightly.  

 Although Lanza’s method showed to have the highest power amongst the 

studied methods, levels of entropy affect this approach and outputs higher than desired 

type I error rates.  Because of the type I error results, researchers using Lanza’s 

method should expect from previous literature that the distal outcome has an effect of 

greater than or equal to .3.   

 In the applied study, the Vermunt’s method yielded slightly higher values of 

means across classes and p values when comparing classes in the !! test.  Applied 

researchers implementing LPA with distal outcomes in their analyses should be aware 

of these differences when values are at cut-offs critical to theory.  More studies are 

needed to compare LPA models with covariates in applied and simulation studies. 
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This study compared methods under different conditions for using auxiliary 

variables in LCA models.  However, no simulations in this study had missing data, so 

future studies should compare the three methods with missing data.  The three methods 

studied were not compared to the original, one-step method.  Future studies should also 

include a simulation of LPA and apply entropy greater than .8 to determine the effect of 

optimal class separation.  Based on previous research, increasing entropy should 

improve the parameter estimates of the PC method.   
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Table 3-1.  E
ffect of m

anipulated conditions on relative bias w
ith predictor auxiliary variables 

E
ffect 

G
 η

2
 

 
M
ethod'

0.148'
Entropy'

0.072'
Entropy'X'M

ethod'
0.044'

Effect'
0.005'

Sam
ple'Size'

0.003'
Effect'X'Sam

ple'Size'
0.003'

Sam
ple'Size'X'M

ethod'
0.001'

Entropy'X'Sam
ple'Size'X'M

ethod'
0.001'

Entropy'X'Effect'
0.000'

Entropy'X'Sam
ple'Size'

0.000'
Effect'X'Sam

ple'Size'X'M
ethod'

0.000'
Entropy'X'Effect'X'M

ethod'
0.000'

Entropy'X'Effect'X'Sam
ple'Size'

0.000'
Effect'X'M

ethod'
0.000'

Entropy'X'Effect'X'Sam
ple'Size'X'M

ethod'
0.000'
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 Table 3-2.  E
ffect of m

anipulated conditions on relative bias of standard error estim
ates w

ith predictor auxiliary variables 

E
ffect 

G
 η

2
 

 
Effect'

0.646'
M
ethod'

0.578'
Entropy'

0.379'
Entropy'X'M

ethod'
0.351'

Effect'X'M
ethod'

0.053'
Entropy'X'Effect'X'M

ethod'
0.023'

Sam
ple'Size'X'M

ethod'
0.015'

Entropy'X'Sam
ple'Size'X'M

ethod'
0.015'

Entropy'X'Effect'
0.007'

Sam
ple'X'Size'

0.005'
Entropy'X'Sam

ple'Size'
0.004'

Effect'X'Sam
ple'Size'

0.003'
Entropy'X'Effect'Sam

ple'Size'
0.001'

Effect'X'Sam
ple'Size'X'M

ethod'
0.001'

Entropy'X'Effect'X'Sam
ple'Size'X'M

ethod'
0.001'
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Table 3-3.  E
ffect of m

anipulated conditions on coverage w
ith predictor auxiliary variables 

E
ffect 

G
 η

2
 

 
Effect'

0.103'
Effect'X'M

ethod'
0.001'

M
ethod'

0.001'
Effect'X'Sam

ple'Size'
0.000'

Entropy'X'Effect'X'Sam
ple'Size'

0.000'
Entropy'

0.000'
Sam

ple'Size'
0.000'

Entropy'X'M
ethod'

0.000'
Entropy''X'Effect'X'M

ethod'
0.000'

Entropy'X'Effect'X'Sam
ple'Size'X'M

ethod'
0.000'

Entropy'X'Effect'
0.000'

Sam
ple'Size'X'M

ethod'
0.000'

Entropy'X'Sam
ple'Size'

0.000'
Effect'X'Sam

ple'Size'X'M
ethod'

0.000'
Entropy'X'Sam

ple'Size'X'M
ethod'

0.000'
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Table 3-4.  E
ffect of m

anipulated conditions on type I error w
ith predictor auxiliary variables 

E
ffect 

G
 η

2
 

 
M
ethod'

0.011'
Entropy'

0.002'
Entropy'X'M

ethod'
0.001'

Entropy'X'Sam
ple'Size'X'M

ethod'
0.000'

Sam
ple'Size'

0.000'
Sam

ple'Size'X'M
ethod'

0.000'
Entropy'X'Sam

ple'Size'
0.000'
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Table 3-5.  E
ffect of m

anipulated conditions on pow
er w

ith predictor auxiliary variables 

E
ffect 

G
 η

2
 

 
Sam

ple'Size'
0.389'

Entropy'
0.117'

Entropy'X'Sam
ple'Size'

0.058'
Effect'

0.042'
Effect'X'Sam

ple'Size'
0.020'

M
ethod'

0.020'
Sam

ple'Size'X'M
ethod'

0.009'
Entropy'X'M

ethod'
0.007'

Entropy'X'Sam
ple'Size'X'M

ethod'
0.003'

Entropy'X'Effect'X'M
ethod'

0.000'
Entropy'X'Effect'X'Sam

ple'Size'X'M
ethod'

0.000'
Entropy'X'Effect'X'Sam

ple'Size'
0.000'

Effect'X'M
ethod'

0.000'
Effect'X'Sam

ple'Size'X'M
ethod'

0.000'
Entropy'X'Effect'

0.000'
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Table 3-6.  M
onte C

arlo sim
ulation results w

ith pseudo class m
ethod to estim

ate effect of a latent class predictor 

M
ethod 

E
ntropy 

E
ffect 

S
am

ple S
ize 

R
elative B

ias of 
C

oefficient 
E

stim
ate 

R
elative B

ias of 
S

tandard E
rror 

E
stim

ate 
C

overage 
Type I 
E

rror 
P

ow
er 

P
C

 
0.500 

0.000 
100.000 

A 
1.449 

0.778 
0.002 

- 
P

C
 

0.500 
0.000 

500.000 
A 

1.948 
0.759 

0.001 
- 

P
C

 
0.500 

0.000 
5000.000 

A 
2.033 

0.768 
0.000 

- 
P

C
 

0.500 
0.300 

100.000 
A0.355 

0.965 
0.989 

- 
0.012 

P
C

 
0.500 

0.300 
500.000 

A0.556 
0.823 

1.000 
- 

0.069 
P

C
 

0.500 
0.300 

5000.000 
A0.568 

0.920 
1.000 

- 
0.999 

P
C

 
0.500 

0.500 
100.000 

A0.482 
0.640 

0.994 
- 

0.043 
P

C
 

0.500 
0.500 

500.000 
A0.570 

0.807 
1.000 

- 
0.398 

P
C

 
0.500 

0.500 
5000.000 

A0.578 
0.905 

1.000 
- 

1.000 
P

C
 

0.800 
0.000 

100.000 
A 

0.839 
0.782 

0.024 
- 

P
C

 
0.800 

0.000 
500.000 

A 
1.020 

0.761 
0.018 

- 
P

C
 

0.800 
0.000 

5000.000 
A 

0.949 
0.746 

0.023 
- 

P
C

 
0.800 

0.300 
100.000 

A0.030 
0.236 

0.970 
- 

0.180 
P

C
 

0.800 
0.300 

500.000 
A0.130 

0.162 
0.988 

- 
0.780 

P
C

 
0.800 

0.300 
5000.000 

A0.162 
0.175 

1.000 
- 

1.000 
P

C
 

0.800 
0.500 

100.000 
A0.125 

0.201 
0.984 

- 
0.435 

P
C

 
0.800 

0.500 
500.000 

A0.165 
0.164 

0.994 
- 

0.994 
P

C
 

0.800 
0.500 

5000.000 
A0.165 

0.193 
1.000 

- 
1.000 
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Table 3-7.  M
onte C

arlo sim
ulation results w

ith V
erm

unt’s m
ethod to estim

ate effect of a latent class predictor 

M
ethod 

E
ntropy 

E
ffect 

S
am

ple 
S

ize 

R
elative B

ias 
of C

oefficient 
E

stim
ate  

R
elative B

ias of 
S

tandard E
rror 

E
stim

ate 
C

overage 
Type I 
E

rror 
P

ow
er 

V
erm

unt 
0.500 

0.000 
100.000 

A 
0.618 

0.793 
0.031 

- 
V

erm
unt 

0.500 
0.000 

500.000 
A 

0.611 
0.774 

0.044 
- 

V
erm

unt 
0.500 

0.000 
5000.000 

A 
0.611 

0.779 
0.055 

- 
V

erm
unt 

0.500 
0.300 

100.000 
0.104 

0.284 
0.955 

- 
0.074 

V
erm

unt 
0.500 

0.300 
500.000 

A0.051 
0.039 

0.969 
- 

0.414 
V

erm
unt 

0.500 
0.300 

5000.000 
A0.002 

0.022 
0.970 

- 
1.000 

V
erm

unt 
0.500 

0.500 
100.000 

A0.112 
0.071 

0.965 
- 

0.163 
V

erm
unt 

0.500 
0.500 

500.000 
A0.064 

A0.014 
0.975 

- 
0.817 

V
erm

unt 
0.500 

0.500 
5000.000 

A0.001 
0.016 

0.976 
- 

1.000 
V

erm
unt 

0.800 
0.000 

100.000 
A 

0.602 
0.782 

0.053 
- 

V
erm

unt 
0.800 

0.000 
500.000 

A 
0.710 

0.778 
0.044 

- 
V

erm
unt 

0.800 
0.000 

5000.000 
A 

0.677 
0.760 

0.050 
- 

V
erm

unt 
0.800 

0.300 
100.000 

0.126 
0.075 

0.953 
- 

0.258 
V

erm
unt 

0.800 
0.300 

500.000 
0.035 

A0.011 
0.966 

- 
0.844 

V
erm

unt 
0.800 

0.300 
5000.000 

A0.004 
0.009 

0.978 
- 

1.000 
V

erm
unt 

0.800 
0.500 

100.000 
0.026 

0.018 
0.965 

- 
0.535 

V
erm

unt 
0.800 

0.500 
500.000 

0.001 
A0.024 

0.969 
- 

0.997 
V

erm
unt 

0.800 
0.500 

5000.000 
0.002 

0.010 
0.976 

- 
1.000 
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Table 3-8.  E
ffect of m

anipulated conditions on relative bias w
ith distal outcom

e variables 

E
ffect 

G
 η

2
 

 
M
ethod'

0.279'
Sam

ple'Size'X'M
ethod'

0.004'
Entropy'X'M

ethod'
0.002'

Entropy'X'Sam
ple'Size'X'M

ethod'
0.001'

Entropy'
0.001'

Sam
ple'Size'

0.000'
Effect'

0.000'
Effect'X'Sam

ple'Size'X'M
ethod'

0.000'
Entropy'X'Effect'

0.000'
Effect'X'M

ethod'
0.000'

Entropy'X'Effect'X'M
ethod'

0.000'
Entropy'X'Sam

ple'Size'
0.000'

Effect'X'Sam
ple'Size'

0.000'
Entropy'X'Effect'X'Sam

ple'Size'X'M
ethod'

0.000'
Entropy'X'Effect'X'Sam

ple'X'Size'
0.000'
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Table 3-9.  E
ffect of m

anipulated conditions on relative bias of standard error estim
ates w

ith distal outcom
e variables 

E
ffect 

G
 η

2
 

 
Effect'X'M

ethod'
0.754'

Entropy'X'M
ethod'

0.605'
Effect'

0.600'
Sam

ple'Size'X'M
ethod'

0.308'
Effect'X'Sam

ple'Size'X'M
ethod'

0.178'
Entropy'

0.149'
M
ethod'

0.145'
Sam

ple'Size'
0.101'

Effect'X'Sam
ple'Size'

0.094'
Entropy'X'Sam

ple'Size'X'M
ethod'

0.035'
Entropy'X'Effect'X'Sam

ple'Size'X'M
ethod'

0.024'
Entropy'X'Effect'X'M

ethod'
0.018'

Entropy'X'Effect'
0.009'

Entropy'X'Effect'X'Sam
ple'Size'

0.006'
Entropy'X'Sam

ple'Size'
0.001'
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Table 3-10.  E
ffect of m

anipulated conditions on coverage w
ith distal outcom

e variables  

E
ffect 

G
 η

2
 

 
Sam

ple'Size'
0.027'

Effect'X'Sam
ple'Size'X'M

ethod'
0.020'

Effect'X'M
ethod'

0.017'
Effect'X'Sam

ple'Size'
0.011'

Effect'
0.009'

Entropy'X'Sam
ple'Size'X'M

ethod'
0.005'

Entropy'X'M
ethod'

0.004'
Sam

ple'Size'X'M
ethod'

0.002'
Entropy'X'Effect'X'Sam

ple'Size'X'M
ethod'

0.002'
Entropy'X'Effect'X'M

ethod'
0.002'

M
ethod'

0.001'
Entropy'X'Sam

ple'Size'
0.001'

Entropy'X'Effect'
0.000'

Entropy'
0.000'

Entropy'X'Effect'X'Sam
ple'Size'

0.000'
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Table 3-11.  E
ffect of m

anipulated conditions on type I error w
ith distal outcom

e variables 

E
ffect 

G
 η

2
 

 
M
ethod'

0.054'
Entropy'X'M

ethod'
0.022'

Entropy'
0.007'

Sam
ple'Size'X'M

ethod'
0.001'

Sam
ple'Size'

0.000'
Entropy'X'Sam

ple'Size'X'M
ethod'

0.000'
Entropy'X'Sam

ple'Size'
0.000'
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Table 3-12.  E
ffect of m

anipulated conditions on pow
er w

ith distal outcom
e variables 

E
ffect 

G
 η

2
 

 
Sam

ple'Size'
0.286'

M
ethod'

0.063'
Effect'

0.047'
Entropy'

0.043'
Sam

ple'Size'X'M
ethod'

0.032'
Entropy'X'M

ethod'
0.030'

Effect'X'Sam
ple'Size'

0.024'
Entropy'X'Sam

ple'Size'
0.020'

Entropy'X'Sam
ple'Size'X'M

ethod'
0.014'

Entropy'X'Effect'X'M
ethod'

0.000'
Effect'X'M

ethod'
0.000'

Entropy'X'Effect'X'Sam
ple'Size'X'M

ethod'
0.000'

Entropy'X'Effect'X'Sam
ple'Size'

0.000'
Effect'X''Sam

ple'Size'X'M
ethod'

0.000'
Entropy'X'Effect'

0.000'
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Table 3-13.  M
onte C

arlo sim
ulation study w

ith a continuous distal outcom
e auxiliary variable for conditions w

ith zero 
effect 

M
ethod 

E
ntropy 

E
ffect 

S
am

ple S
ize 

R
elative B

ias of S
tandard 

E
rror E

stim
ates 

C
overage 

Type I E
rror 

Lanza 
0.5 

0.000 
100.000 

A0.522 
0.989 

0.299 
Lanza 

0.5 
0.000 

500.000 
A0.341 

0.996 
0.186 

Lanza 
0.5 

0.000 
5000.000 

A0.349 
0.984 

0.200 
P

C
 

0.5 
0.000 

100.000 
0.269 

0.982 
0.005 

P
C

 
0.5 

0.000 
500.000 

0.578 
0.955 

0.001 
P

C
 

0.5 
0.000 

5000.000 
0.539 

0.690 
0.000 

V
erm

unt 
0.5 

0.000 
100.000 

A0.268 
0.997 

0.065 
V

erm
unt 

0.5 
0.000 

500.000 
A0.264 

0.996 
0.038 

V
erm

unt 
0.5 

0.000 
5000.000 

A0.294 
0.986 

0.059 
Lanza 

0.8 
0.000 

100.000 
A0.119 

0.996 
0.093 

Lanza 
0.8 

0.000 
500.000 

A0.071 
0.993 

0.077 
Lanza 

0.8 
0.000 

5000.000 
A0.056 

0.911 
0.072 

P
C

 
0.8 

0.000 
100.000 

0.068 
0.995 

0.028 
P

C
 

0.8 
0.000 

500.000 
0.113 

0.983 
0.022 

P
C

 
0.8 

0.000 
5000.000 

0.135 
0.830 

0.019 
V

erm
unt 

0.8 
0.000 

100.000 
A0.092 

0.995 
0.059 

V
erm

unt 
0.8 

0.000 
500.000 

A0.055 
0.995 

0.045 
V

erm
unt 

0.8 
0.000 

5000.000 
A0.044 

0.913 
0.051 
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Table 3-14.  M
onte C

arlo sim
ulation study w

ith a continuous distal outcom
e auxiliary variable w

ith effect of .3 

M
ethod 

E
ntropy 

E
ffect 

S
am

ple S
ize 

R
elative B

ias of 
C

oefficient E
stim

ate 

R
elative B

ias of 
S

tandard E
rror 

E
stim

ates 
C

overage 
P

ow
er 

Lanza 
0.5 

0.300 
100.000 

0.066 
A0.507 

0.987 
0.424 

Lanza 
0.5 

0.300 
500.000 

0.030 
A0.371 

0.995 
0.812 

Lanza 
0.5 

0.300 
5000.000 

0.003 
A0.330 

0.977 
1.000 

P
C

 
0.5 

0.300 
100.000 

A0.705 
0.068 

0.998 
0.028 

P
C

 
0.5 

0.300 
500.000 

A0.857 
A0.336 

1.000 
0.081 

P
C

 
0.5 

0.300 
5000.000 

A0.918 
A0.772 

1.000 
1.000 

V
erm

unt 
0.5 

0.300 
100.000 

A0.239 
A0.266 

0.998 
0.128 

V
erm

unt 
0.5 

0.300 
500.000 

A0.047 
A0.313 

0.994 
0.479 

V
erm

unt 
0.5 

0.300 
5000.000 

0.002 
A0.279 

0.984 
1.000 

Lanza 
0.8 

0.300 
100.000 

A0.053 
A0.081 

0.995 
0.297 

Lanza 
0.8 

0.300 
500.000 

0.021 
A0.028 

0.984 
0.918 

Lanza 
0.8 

0.300 
5000.000 

A0.005 
A0.099 

0.939 
1.000 

P
C

 
0.8 

0.300 
100.000 

A0.720 
A0.299 

1.000 
0.165 

P
C

 
0.8 

0.300 
500.000 

A0.779 
A0.653 

1.000 
0.811 

P
C

 
0.8 

0.300 
5000.000 

A0.824 
A0.884 

1.000 
1.000 

V
erm

unt 
0.8 

0.300 
100.000 

A0.086 
A0.067 

0.997 
0.221 

V
erm

unt 
0.8 

0.300 
500.000 

0.019 
A0.015 

0.985 
0.881 

V
erm

unt 
0.8 

0.300 
5000.000 

A0.005 
A0.086 

0.946 
1.000 
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Table 3-15.  M
onte C

arlo sim
ulation study w

ith a continuous distal outcom
e auxiliary variable w

ith effect of .5 

M
ethod 

E
ntropy 

E
ffect 

S
am

ple S
ize 

R
elative B

ias 
of C

oefficient 
E

stim
ate 

R
elative B

ias of 
S

tandard E
rror 

E
stim

ates 
C

overage 
P

ow
er 

Lanza 
0.5 

0.500 
100.000 

0.090 
A0.470 

0.988 
0.664 

Lanza 
0.5 

0.500 
500.000 

0.003 
A0.347 

0.992 
0.989 

Lanza 
0.5 

0.500 
5000.000 

A0.001 
A0.321 

0.971 
1.000 

P
C

 
0.5 

0.500 
100.000 

A0.710 
A0.189 

0.998 
0.070 

P
C

 
0.5 

0.500 
500.000 

A0.856 
A0.559 

1.000 
0.462 

P
C

 
0.5 

0.500 
5000.000 

A0.911 
A0.860 

1.000 
1.000 

V
erm

unt 
0.5 

0.500 
100.000 

A0.183 
A0.281 

0.997 
0.297 

V
erm

unt 
0.5 

0.500 
500.000 

A0.079 
A0.310 

0.995 
0.862 

V
erm

unt 
0.5 

0.500 
5000.000 

0.002 
A0.285 

0.979 
1.000 

Lanza 
0.8 

0.500 
100.000 

A0.007 
A0.095 

0.994 
0.675 

Lanza 
0.8 

0.500 
500.000 

A0.006 
A0.084 

0.995 
0.999 

Lanza 
0.8 

0.500 
5000.000 

0.001 
A0.053 

0.919 
1.000 

P
C

 
0.8 

0.500 
100.000 

A0.734 
A0.535 

1.000 
0.477 

P
C

 
0.8 

0.500 
500.000 

A0.749 
A0.777 

1.000 
0.996 

P
C

 
0.8 

0.500 
5000.000 

A0.804 
A0.930 

1.000 
1.000 

V
erm

unt 
0.8 

0.500 
100.000 

A0.035 
A0.079 

0.995 
0.554 

V
erm

unt 
0.8 

0.500 
500.000 

A0.007 
A0.067 

0.991 
0.999 

V
erm

unt 
0.8 

0.500 
5000.000 

0.000 
A0.042 

0.928 
1.000 
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 Table 3-16.       Fit Indices for C
om

peting Latent P
rofile M

odels 

M
odel 

Log-
Likelihood 

A
IC

 
B

IC
 

E
ntropy 

LM
R

-A
 p-value 

2 class 
-27110.020 

54270.039 
54396.977 

0.965 
<.001 

3 class 
-26677.187 

53418.373 
53580.853 

0.963 
.008 

4 class 
-26437.697 

52953.395 
53151.417 

0.971 
0.1166 

           Table 3-17.      C
lass C

ounts and P
roportions for 3-class M

odel 
 Latent 
C

lasses 
C

ounts 
P

roportions 

1  
545.091 

.460 
2  

536.005 
.452 

3  
103.903 

.088 
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   Table 3-18.       Latent P
rofile M

odel R
esults  

Latent 
C

lass 
Indicator 
(M

ean) 
E

stim
ate 

V
ariance 

!!value 
1 class 

U
1 

3.655 
5.595 

<.05 

 
U

2 
3.184 

9.747 
<.05 

 
U

3 
9.172 

121.735 
<.05 

 
U

4 
7.754 

142.683 
<.05'

 
U

5 
.560 

0.766 
<.05'

 
U

6 
.731 

1.242 
<.05'

2 class 
U

1 
10.492 

40.402 
<.05'

 
U

2 
13.043 

117.971 
<.05'

 
U

3 
41.993 

2321.228 
<.05'

 
U

4 
73.415 

40374.367 
<.05'

 
U

5 
9.381 

153.970 
<.05'

 
U

6 
7.911 

150.246 
<.05'

3 class 
U

1 
24.656 

40.402 
<.05'

 
U

2 
38.673 

117.971 
<.05'

 
U

3 
63.672 

2321.228 
<.05'

 
U

4 
215.482 

40374.367 
<.05'

 
U

5 
47.808 

153.970 
<.05'

 
U

6 
31.594 

150.246 
<.05'
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Table 3-19.  E
quality Test of M

eans using 3-S
tep M

ethods  
 M

ethod 
Latent 
C

lass 
M

ean 
O

verall Test 
!
! 

!!value 
P

C
 

1 class 
63.359 

C
lass 1 vs 2 

15.629 
<.001 

P
C

 
2 class 

69.466 
C

lass 1 vs 3 
48.273 

<.001 
P

C
 

3 class 
80.249 

C
lass 2 vs 3 

19.944 
<.001 

V
erm

unt 
1 class 

63.374 
C

lass 1 vs 2 
30.251 

.001'
V

erm
unt 

2 class 
68.927 

C
lass 1 vs 3 

10.607 
.001'

V
erm

unt 
3 class 

83.322 
C

lass 2 vs 3 
5.012 

.025'
Lanza 

1 class 
63.251 

C
lass 1 vs 2 

71.065 
<.001'

Lanza 
2 class 

69.356 
C

lass 1 vs 3 
15.802 

<.001'
Lanza 

3 class 
80.992 

C
lass 2 vs 3 

70.313 
<.001'


